Sizes 40 to 250

▶ Open circuit

Nominal pressure 350 bar Maximum pressure 400 bar



# Axial piston variable pump A4VSO for explosive areas ATEX II 3G ck IIC Tx





Part II of instruction manual according to ATEX directive 2014/34/EU Data Sheet RE 92050-01-X-B2

Edition: 01.2017 Replaces: 04.2016



# Details on explosion protection

- ► Field of application according to ATEX 2014/34/EU
- Gas: II 3G ck IIC Tx according to DIN EN 13463-1:2009,
   DIN EN 13463-5:2011, DIN EN 13463-8:2003

#### **Features**

Variable pump with axial piston rotary group of swashplate design for hydrostatic drives in open circuit hydraulic system Flow is proportional to drive speed and displacement. Control of the swashplate allows the volume flow to be infinitely varied.

- ► Good suction characteristics
- ▶ Low noise
- ▶ Long service life
- ► Modular system
- ▶ Short control times
- ► Variable through-drive options
- ► Optical swivel angle indicator

Descriptions of control device, see separate data sheets 92060, 92064, 92080

| Inhalt                                                 |    |
|--------------------------------------------------------|----|
| Ordering code                                          | 2  |
| Hydraulic fluid                                        | 4  |
| Monitoring operating data – specification for Tx       | 5  |
| Operating pressure range                               | 6  |
| Technical data                                         | 7  |
| OV - Without variable control facility                 | 9  |
| DR - Pressure controller                               | 9  |
| DP - Pressure controller for parallel operation        | 10 |
| FR - Flow controller                                   | 10 |
| DFR - Pressure and flow controller                     | 11 |
| LR2 - Power controller with hyperbolic characteristic  | 11 |
| LR3 - Power controller with remote controlled variable |    |
| power characteristic                                   | 12 |
| HD - Hydraulic control, pilot-pressure related         | 12 |
| Dimensions, size 40 to 250                             | 13 |
| Through drive dimensions                               | 23 |
| Overview of attachment options                         | 31 |
| Dimensions of combination pumps                        |    |
| with two A4VSO ATEX II 3G c IIC T4                     | 32 |
| Project planning note                                  | 36 |
| Safety instructions                                    | 36 |

# **Ordering code**

| 0           | 1                 | 02          | 03          | 04            | 05           |             | 06         | 07             |             | 08           | 09    | 1          | .0 |          | 11       |          | 12     |
|-------------|-------------------|-------------|-------------|---------------|--------------|-------------|------------|----------------|-------------|--------------|-------|------------|----|----------|----------|----------|--------|
|             |                   | <b>44VS</b> | 0           |               |              | /           |            |                | _           | Α            |       |            | В  |          | 25       |          |        |
| Hydra       | aulic flu         | id/vers     | ion         | -             | •            |             | •          | -              |             |              |       | 40         | 71 | 125      | 180      | 250      |        |
| 01          | 1                 |             | ithout syn  | mbol)         |              |             |            |                |             |              |       | •          | •  | •        | •        | •        |        |
|             | High-sı           | peed ve     | rsion       |               |              |             |            |                |             |              |       | <b>+</b> _ | _  | <u> </u> | <u> </u> | •        | н      |
|             |                   |             |             |               |              |             |            |                |             |              |       |            |    |          | ļ        |          | ļ      |
|             | piston            |             |             | .1            | l            | 250 h       |            |                | 20 5        |              |       |            |    |          |          |          | A 41/C |
| 02          |                   |             | gn, variac  | ole, nomina   | pressure     | 350 bar, r  | naximum p  | ressure 40     | DO bar      |              |       |            |    |          |          |          | A4VS   |
|             | ating m           |             | inavit      |               |              |             |            |                |             |              |       |            |    |          |          |          |        |
| 03          |                   | open ci     | ircuit      | -             |              |             |            |                |             |              |       |            |    |          |          |          | 0      |
|             | (NG)              |             |             |               |              |             |            |                |             |              |       | T          | 1  | 1        | 1        | T        | 1      |
| 04          | Geome             | etric dis   | placemer    | nt, see table | e of values  | on page 6   | )<br>      |                |             |              |       | 40         | 71 | 125      | 180      | 250      | J      |
|             | rol devi          |             |             |               |              |             |            |                |             |              |       |            | 1  |          | 1        |          |        |
| 05          | Withou<br>cility  | ıt variab   | ole contro  | ol fa-        |              |             |            |                |             |              |       | •          | •  | •        | •        | •        | ov     |
|             | Pressu            | re cont     | roller      |               |              |             |            | _              |             | n about ch   |       | •          | •  | •        | •        | •        | DR     |
|             | Pressu            | re cont     | rol for pa  | rallel opera  | tion         |             |            | controlle<br>- | r, see pag  | ges 10 and 9 | 92060 | •          | •  | •        | •        | •        | DP     |
|             | Flow c            | ontrolle    | er          |               |              |             |            | _              |             |              |       | •          | •  | •        | •        | •        | FR     |
|             |                   |             | flow cont   |               |              |             |            |                |             |              |       | •          | •  | •        | •        | •        | DFR.   |
|             |                   |             |             | yperbolic o   |              |             |            |                |             | n about ch   |       | •          | •  | •        | •        | •        | LR2    |
|             | Power<br>teristic |             | ler with r  | emote cont    | rolled vari  | able powe   | er charac- | controlle      | er, see pag | ges 11 and S | 92064 | •          | •  | •        | •        | •        | LR3    |
|             | Hydrau            | ılic cont   | trol, press | sure-related  | d            |             |            |                |             | n about ch   |       | •          | •  | •        | •        | •        | HD     |
|             |                   |             |             |               |              |             |            | controlle      | er, see pag | ges 11 and 9 | 92080 |            |    |          |          |          |        |
| Serie<br>06 | 1                 | 1, index    | v 0         |               |              |             |            |                |             |              |       | •          |    | Ι_       | Τ_       | _        | 10     |
| 00          | <b>—</b>          | -           |             | or HD conti   | -ol          |             |            |                |             |              |       | •          | •  | Η_       | H        | <u>-</u> | 11     |
|             |                   | 3, index    |             | or tib conti  | 01           |             |            |                |             |              |       | +-         | -  |          | •        | •        | 30     |
| Direc       | ctions of         | <u> </u>    |             |               |              |             |            |                |             |              |       |            |    |          |          |          |        |
| 07          | 1                 |             | ve shaft    |               |              |             |            | CW             |             |              |       | •          |    | •        |          | •        | R      |
| "           | Viewee            | · on an     | vo onare    |               |              |             |            | ccw            |             |              |       | •          | •  | •        | •        | •        | L      |
| Soals       | and AT            | EY vor      | sion        |               |              |             |            |                |             |              |       |            |    |          |          |          |        |
| 08          | 1                 |             |             | and ATEX      | version II 3 | 3G ck IIC 1 | <br>Гх     |                |             |              |       |            |    |          |          |          | Α      |
|             | shafts            |             | ,           |               |              |             |            |                |             |              |       |            | -  |          | -        |          |        |
| 09          | 1                 | l kevad     | shaft DIN   | J 6885        |              |             |            |                |             |              |       |            |    |          |          |          | Р      |
| 03          |                   |             | DIN 5480    |               |              |             |            |                |             |              |       |            |    |          |          |          | Z      |
| Mour        | nting fla         |             | 5 100       |               |              |             |            |                |             |              |       |            |    |          |          |          |        |
| 10          | 1                 |             | 3019-2 (r   | metric)       |              |             |            |                | 4-          | hole         |       |            |    |          |          |          | В      |
| Servi       | ice line          | ports       |             |               | ,            |             |            |                |             |              |       |            |    |          |          |          | ,      |
| 11          | SAE fla           | nge po      |             | Ва            | nd S offse   | t by 90° at | sides      |                |             | B1 opposit   |       |            |    |          |          |          | 25     |

| 01 | 02        | 03 | 04 | 05 |     | 06 | 07 | 1 | - 08 | 09 | 10  | 11 | 12 |
|----|-----------|----|----|----|-----|----|----|---|------|----|-----|----|----|
| 1  | 1 441/6 1 | ^  |    |    | 1 / |    |    | _ |      |    | l D | 25 | 1  |

Through drives<sup>1)</sup> (mounting options, see page 31)

| Flange, ISO 3019-2 (metric)           | Hub for s     | splined shaft | For mounting A4VSO  |    |    |     |     |     |   |
|---------------------------------------|---------------|---------------|---------------------|----|----|-----|-----|-----|---|
| Diameter                              | Diamete       | r             | ATEX II 3G c IIC T4 | 40 | 71 | 125 | 180 | 250 |   |
| Without through drive and a           | uxiliary pun  | np            |                     | •  | •  | •   | •   | •   | N |
| with through drive for moun           | ting of axial | piston pump   |                     | •  | •  | -   | -   | -   | K |
| 125-4 (ISO)                           | 32x2x14       | x9g           | A4VSO NG40          | •  | •  | -   | -   | -   | : |
| 140-4 (ISO)                           | 40x2x18       | x9g           | A4VSO NG71          | -  | •  | -   | -   | -   |   |
| 80-2 (ISO)                            | 3/4 in        | 11T 16/32DP   | A10VSO 18/31        | •  | •  | -   | -   | -   | l |
| 100-2 (ISO)                           | 7/8 in        | 13T 16/32DP   | A10VSO 28/31        | •  | •  | -   | -   | -   |   |
| 100-2 (ISO)                           | 1 in          | 15T 16/32DP   | A10VSO 45/31        | •  | •  | -   | -   | -   |   |
| 125-2 (ISO)                           | 1 1/4 in      | 14T 12/24DP   | A10VSO 71/31        | -  | •  | -   | -   | -   |   |
| Universal through drive <sup>2)</sup> |               |               |                     | -  | -  | •   | •   | •   | ι |
| 125-4                                 | 32x2x14       | x9g           | NG40                | -  | -  | •   | •   | •   | : |
| 140-4                                 | 40x2x18       | x9g           | NG71                | -  | -  | •   | •   | •   | - |
| 160-4                                 | 50x2x24       | x9g           | NG125 und NG180     | -  | -  | •   | •   | •   | : |
| 224-4                                 | 60x2x28       | x9g           | NG250               | -  | -  | -   | -   | •   | : |
| 80-2 (ISO)                            | 3/4 in        | 11T 16/32DP   | A10VSO 18/31        | -  | -  | •   | •   | •   | Ī |
| 100-2 (ISO)                           | 7/8 in        | 13T 16/32DP   | A10VSO 28/31        | -  | -  | •   | •   | •   |   |
| 100-2 (ISO)                           | 1 in          | 15T 16/32DP   | A10VSO 45/31        | -  | -  | •   | •   | •   | П |
| 125-2 (ISO)                           | 1 1/4 in      | 14T 12/24DP   | A10VSO 71/31        | -  | -  | •   | •   | •   | П |
| 125-2 (ISO)                           | 1 1/2 in      | 17T 12/24DP   | A10VSO 100/31       | -  | -  | •   | •   | •   | Ī |

• = Available • = On request - = Not available

#### Instructions

- ▶ Note the project planning notes on page 36.
- ► In addition to the type code, please specify the relevant technical data when placing your order.

#### **Features of the ATEX version**

The ATEX version is an advanced development of the A4VSO which is compliant with Directive 2014/34/EU (ATEX). External distinguishing features compared to the standard pump 92050 are the ground terminal, the EX marking and the CE marking on the name plate.

#### Temperature classes according to EN 13463-1

Depending on the temperature classes T3 and T4 the maximum temperatures should be noted (please refer "hydraulic fluid" and "monitoring the operational data for Tx").

#### Information

- ► ATEX classification: When ordering, please state which equipment group, category, explosion group, temperature class and ignition protection type are required for your planned ATEX application.
- ► **Technical data:** Compared to the standard pump, there are restrictions in the technical data relating to temperature, case pressure and bearing flushing / installation position.
- ▶ Painting/choise of color: In order to avoid mechanically generated sparks from contaminants made of aluminum with iron oxide and/or particles of rust of the surface<sup>3)</sup>, the pump is painted as standard with corrosion protecting. Please contact your partner from Rexroth about the available colors for the painted units.
- ➤ **Service life:** The service life of the bearings must be calculated. The load cycle forms the basis for this. Please contact us.
- ► **Potential equalization:** The pump must be grounded. For grounding points, please refer to the drawings starting on page 13.

All attachment pumps must be compliant with the ATEX classification relevant to the application

<sup>2)</sup> With through-drive shaft, without hub, without intermediate flange, closed on a functionally reliable basis with cover

<sup>3)</sup> See DIN EN 13463-1, 6.4.2.1

# **Hydraulic fluid**

The A4VSO ATEX II 3G ck IIC Tx variable pump is designed for operation with HLP mineral oil according to DIN 51524. Application instructions and requirements for hydraulic fluids should be taken from the following data sheets before the start of project planning:

► 90220: Hydraulic fluids based on mineral oils and related hydrocarbons

#### Details regarding the selection of hydraulic fluid

The hydraulic fluid should be selected such that the operating viscosity in the operating temperature range is within the optimum range ( $\nu_{opt}$ , see selection diagram).

#### Note

The case drain temperature, which is affected by pressure and speed, is always higher than the reservoir temperature.

#### Temperature class T3 according to ATEX:

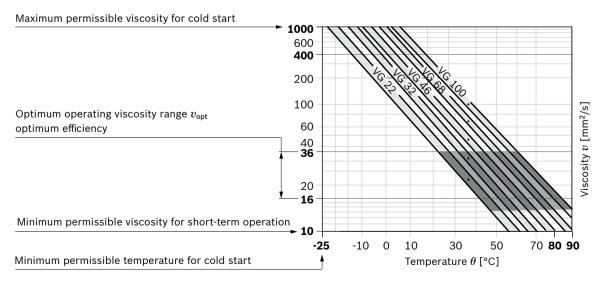
At no point of the component may the temperature be higher than 90 °C, howerver.

#### Temperature class T4 according to ATEX:

At no point of the component may the temperature be higher than 80 °C, howerver.

The temperature difference specified is to be taken into account when determining the viscosity in the bearing.

#### Ignition temperatur of hydraulic fluid


The pump is approved according to DIN EN 13463-1 for the temperature class T3 and T4.

According to DIN EN 13463-5 only use hydraulic fluids whose ignition temperatur is at least 50 K higher than the maximum surface temperatur of the approved temperature class eg.: The required temperature class for the application is T4. Therefor the ignition temperature of the hydraulic fluid has to be ≥ 185 °C.

#### Viscosity and temperature of hydraulic fluids

|                      | viscosity                                        | temperature                                                | comment                                                                                        |
|----------------------|--------------------------------------------------|------------------------------------------------------------|------------------------------------------------------------------------------------------------|
| Cold start           | $v_{\text{max}} \leq 1000 \text{ mm}^2/\text{s}$ | θ <sub>St</sub> ≥ -20 °C                                   | $t \le 3$ min, without load $p \le 50$ bar                                                     |
| permissible temper   | ature differenz                                  | ΔT ≤ 25 K                                                  | between axial piston unit and hydraulic fluid                                                  |
| Warm-up phase        | $\nu$ = 1000 bis 100 mm <sup>2</sup> /s          | θ ≥ -25 °C                                                 | at $p_{\text{nom}}$ , $0.5 \times n_{\text{max}}$ and $t \le 15$ min                           |
| Operating phase      | v = 100 bis 16 mm <sup>2</sup> /s                | T3<br>θ = -20 °C bis +90 °C<br>T4<br>θ = -20 °C bis +80 °C | measured at leakage port <b>L</b> observe permissible temperature range of the shaft seal ring |
|                      | $v_{\rm opt}$ = 36 to 16 mm <sup>2</sup> /s      |                                                            | Range of optimum operating viscosity and efficiency                                            |
| Short-term operation | $v_{min} \le 10 \text{ mm}^2/\text{s}$           | θ <sub>max</sub> = +90 °C                                  | $t < 3 \text{ min}, p < 0.3 \times p_{\text{nom}}$                                             |

#### ▼ Selection diagram



# Monitoring operating data - specification for Tx

#### **Safety instructions**

#### **Temperature class T3**

To keep the **maximum leakage temperature of 90°C** at least one of the following measures must be taken and controlled regularly:

- check the leak oil temperature at port T or R(L) (maximum distance 30 cm)
- check the suction temperature at maximum 60°C at the suction port

#### Temperature class T4

To keep the **maximum leakage temperature of 80°C** at least one of the following measures must be taken and controlled regularly:

- ► check the leak oil temperature at port **T** or **R(L)** (maximum distance 30 cm)
- check the suction temperature at maximum 50°C at the suction port

#### Temperature class T3 and T4

- check the maximum suction temperature that is determined at the initial operation for the following working points:
  - maximum working pressure and maximum flow
  - maximum working pressure and minimum flow

In addition to that a monitoring of the tank filling height is to be made. When the temperature limits are exceeded, suitable countermeasures have to follow.

#### **Bearing flushing**

Bearing flushing is necessary for safe continuous operation under the following operating conditions:

- Operation with extreme temperature and viscosity conditions
- ► For vertical installation (drive shaft upward) and for installation above the reservoir (regardless of the position of the shaft), bearing flushing is stipulated for lubricating the front bearing and the shaft seal.

Bearing flushing is realized by port **U** in the area of the front flange of the variable pump. The flushing fluid flows through the front bearing and escapes through the case drain port with the pump case drain fluid.

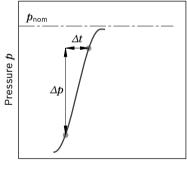
For the individual sizes, the following minimum flushing flows are required:

| Size          |          |       | 40 | 71 | 125 | 180 | 250 |
|---------------|----------|-------|----|----|-----|-----|-----|
| Flushing flow | $q_{sp}$ | l/min | 3  | 4  | 5   | 7   | 10  |

For the specified flushing flows, there is a pressure differential between port **U** (including fittings) and the case drain chamber of about 2 bar for series 10 and 11 and about 3 bar for series 30.

#### Notes on series 30

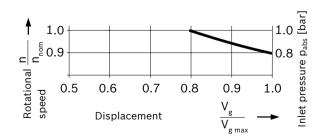
If using external bearing flushing, turn the throttle screw at port "**U**" in to the stop.


#### Flow direction

S to B

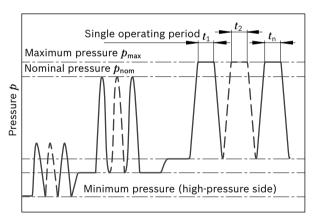
# **Operating pressure range**

| Pressure at service line port B                             |                                   | Definition                                                                                                                                                                                                 |
|-------------------------------------------------------------|-----------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Nominal pressure $p_{nom}$                                  | 350 bar<br>absolute <sup>1)</sup> | The nominal pressure corresponds to the maximum design pressure.                                                                                                                                           |
| Maximum pressure $p_{max}$                                  | 400 bar absolute                  | The maximum pressure corresponds to the maximum operating pressure within                                                                                                                                  |
| Single operating period                                     | 1 s                               | the single operating period. The sum of the single operating periods must not                                                                                                                              |
| Total operating period                                      | 300 h                             | exceed the total operating period.                                                                                                                                                                         |
| Minimum pressure (high-pressure side)                       | 15 bar absolute                   | Minimum pressure at the high-pressure side ( <b>B</b> ) which is required in order to prevent damage to the axial piston unit.                                                                             |
| Rate of pressure change $R_{ m A\ max}$                     | 16000 bar/s                       | Maximum permissible rate of pressure build-up and reduction during a pressure change over the entire pressure range.                                                                                       |
| Pressure at suction port S (inlet)                          |                                   |                                                                                                                                                                                                            |
| Minimum pressure Standard ps min                            | 0.8 bar absolute                  | Minimum pressure at suction port <b>S</b> (inlet) that is required in order to avoid damage to the axial piston unit. The minimum pressure depends on the speed and displacement of the axial piston unit. |
| Maximum pressure $p_{Smax}$                                 | 30 bar absolute                   |                                                                                                                                                                                                            |
| Case drain pressure at port L <sub>1</sub> , L <sub>2</sub> |                                   |                                                                                                                                                                                                            |
| Maximum pressure $p_{Lmax}$                                 | 2 bar absolute                    | The permissible case drain pressure (case pressure) depend on rotational speed. These figures are guidelines figures only; restrictions may be necessary under certain operating conditions.               |


#### **▼** Rate of pressure change $R_{A \text{ max}}$



Time t


#### **▼** Minimum pressure (inlet)

In order to avoid damage to the axial piston unit, a minimum pressure must be guaranteed at the suction port **S** (inlet). The minimum pressure depends on the speed and displacement of the axial piston unit



The inlet pressure is the static inlet pressure or the minimum dynamic pre-charge pressure value. Maximum permissible rotational speed  $n_{\text{nom}}$ , see page 7.

#### **▼** Pressure definition



Time t

Total operating period =  $t_1 + t_2 + ... + t_n$ 

#### Note

Operating pressure range valid when using hydraulic fluids based on mineral oils. Values for other hydraulic fluids, please contact us.

#### **Technical data**

| Size                                   |                                                                 | NG                 |                 | 40     | 71     | 125    | 180    | 250    | 250 H <sup>1)</sup> |
|----------------------------------------|-----------------------------------------------------------------|--------------------|-----------------|--------|--------|--------|--------|--------|---------------------|
| Geometric displace per revolution      | cement,                                                         | $V_{g\;max}$       | cm <sup>3</sup> | 40     | 71     | 125    | 180    | 250    | 250                 |
| Maximum<br>speed <sup>2)</sup>         | at $V_{ m g\ max}$                                              | $n_{nom}$          | rpm             | 2600   | 2200   | 1800   | 1800   | 1500   | 1800                |
| Flow                                   | at $n_{nom}$ and $V_{g\;max}$                                   | $q_{ m v\; max}$   | l/min           | 104    | 156    | 225    | 324    | 375    | 450                 |
|                                        | at $n_{\rm E}$ = 1500 rpm                                       | $q_{\sf vE\;max}$  | l/min           | 60     | 107    | 186    | 270    | 375    | 375                 |
| Power                                  | at $n_{nom},V_{gmax}$ and $\Delta p$ = 350 bar                  | P                  | kW              | 61     | 91     | 131    | 189    | 219    | 262                 |
|                                        | at $n_E$ = 1500 rpm, $V_{\rm g \ max}$ and $\Delta p$ = 350 bar | P <sub>E max</sub> | kW              | 35     | 62     | 109    | 158    | 219    | 219                 |
| Torque                                 | at $V_{\rm g\ max}$ and $\Delta p$ = 350 bar                    | $T_{max}$          | Nm              | 223    | 395    | 696    | 1002   | 1391   | 1391                |
|                                        | at $V_{\rm g\ max}$ and $\Delta p$ = 100 bar                    | T                  | Nm              | 64     | 113    | 199    | 286    | 398    | 398                 |
| Rotary stiffness                       | Р                                                               | c                  | Nm/rad          | 80000  | 146000 | 260000 | 328000 | 527000 | 527000              |
| drive shaft                            | Z                                                               | c                  | Nm/rad          | 77000  | 146000 | 263000 | 332000 | 543000 | 543000              |
| Moment of inertia                      | a for rotary group                                              | $J_{\sf TW}$       | kgm²            | 0.0049 | 0.0121 | 0.03   | 0.055  | 0.0959 | 0.0959              |
| Angular accelerat                      | ion, maximum <sup>3)</sup>                                      | α                  | rad/s²          | 17000  | 11000  | 8000   | 6800   | 4800   | 4800                |
| Case volume                            |                                                                 | V                  | L               | 2      | 2.5    | 5      | 4      | 10     | 10                  |
| Weight without through drive (approx.) |                                                                 | m                  | kg              | 39     | 53     | 88     | 102    | 184    | 184                 |

| Determination                 | of the      | e operating characteristics                                                                  |                  |
|-------------------------------|-------------|----------------------------------------------------------------------------------------------|------------------|
| Flow                          | $q_{\sf v}$ | $=\frac{V_{g}\boldsymbol{\cdot}\boldsymbol{n}\boldsymbol{\cdot}\boldsymbol{\eta}_{v}}{1000}$ | [l/min]          |
| Torque                        | Т           | $=\frac{V_{\rm g} \cdot \Delta p}{20 \cdot \pi \cdot \eta_{\rm mh}}$                         | [Nm]             |
| Power                         | p           | $= \frac{2 \pi \cdot T \cdot n}{20000} = \frac{q_{v} \cdot \Delta p}{2000}$                  | — [kW]           |
|                               | Р           | 60000 $600 \cdot \eta_{\rm t}$                                                               | [KVV]            |
| Key                           |             |                                                                                              |                  |
| $V_{g}$                       | =           | Displacement per revolution [cn                                                              | n <sup>3</sup> ] |
| $\Delta p$                    | =           | Differential pressure [bar]                                                                  |                  |
| N                             | =           | Rotational speed [rpm]                                                                       |                  |
| $\eta_{\scriptscriptstyleee}$ | =           | Volumetric efficiency                                                                        |                  |
| $\eta_{mh}$                   | =           | Mechanical-hydraulic efficiency                                                              |                  |
| $\eta_{ m t}$                 | =           | Total efficiency ( $\eta_{\rm t}$ = $\eta_{\rm v}$ • $\eta_{\rm mh}$ )                       |                  |

#### Note

- ► Theoretical values, without efficiency levels and tolerances; values rounded
- ▶ Operation above the maximum values or below the minimum values may result in a loss of function, a reduced service life, the destruction of the axial piston unit or the loss of explosion protection. We recommend checking the loading by means of testing or calculation / simulation and comparison with the permissible values.
- Transport and storage
  - $\theta_{\text{min}}$  ≥ -50 °C
  - $\theta_{\text{opt}}$  = +5 °C to +20 °C

<sup>1)</sup> High-speed version

<sup>2)</sup> The values are applicable:

<sup>–</sup> at absolute pressure  $p_{\rm abs}$  = 1 bar at suction port **S** 

<sup>–</sup> for the optimum viscosity range of  $v_{\rm opt}$  = 36 to 16 mm²/s

<sup>-</sup> for hydraulic fluid based on mineral oils

<sup>3)</sup> The data are valid for values between the minimum required and maximum permissible rotational speed. Valid for external excitation (e.g. diesel engine 2 to 8 times rotary frequency; cardan shaft twice the rotary frequency). The limit value applies for a single pump only. The load capacity of the connection parts must be considered.

#### Permissible radial and axial forces of the drive shaft

| Size                        |         | NG                    |   | 40   | 71   | 125  | 180  | 250  |
|-----------------------------|---------|-----------------------|---|------|------|------|------|------|
| Maximum radial force at a/2 | a/2 a/2 | ± $F_{q\;max}$        | N | 1000 | 1200 | 1600 | 2000 | 2000 |
| Maximum axial force         | Fax ±   | + F <sub>ax max</sub> | N | 600  | 800  | 1000 | 1400 | 1800 |

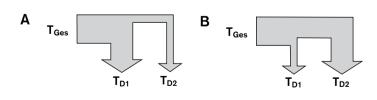
#### Note

► The values given are maximum values and do not apply to continuous operation. For drives with radial loading (pinion, V-belt drives), please contact us!

#### Permissible drive and through-drive torques

The axial piston unit can be supplied with a through drive, corresponding to the ordering code on page 2.

The through drive version is identified by the identifier.


The through-drive version is identified by the identifier K/U 31...35.

It is advisable not to couple more than three single pump in series.

All attachment pumps must be compliant with the ATEX classification relevant to the application.

| ze                                        |                   | 40    | 71  | 125  | 180  | 250  |
|-------------------------------------------|-------------------|-------|-----|------|------|------|
| lined shaft                               |                   |       |     |      |      |      |
| Max. permissible total drive torque ar    | n shaft of 1st p  | oump  |     |      |      |      |
| (1st pump + 2nd pump)                     | $T_{Tot max}$ Nr  | n 446 | 790 | 1392 | 2004 | 2782 |
| A Downsiasible through drive torque       | $T_{D1 \ max}$ Nr | n 223 | 395 | 696  | 1002 | 1391 |
| A Permissible through-drive torque        | $T_{D2max}$ Nr    | n 223 | 395 | 696  | 1002 | 1391 |
| D Downsiasible through drive torque       | $T_{D1\;max}$ Nr  | n 223 | 395 | 696  | 1002 | 1391 |
| <b>B</b> Permissible through-drive torque | $T_{D2max}$ Nr    | n 223 | 395 | 696  | 1002 | 1391 |
| aft key                                   |                   |       |     |      |      |      |
| Max. permissible total drive torque ar    | n shaft of 1st p  | oump  |     |      |      |      |
| (1st pump + 2nd pump)                     | $T_{Tot max}$ Nr  | n 380 | 700 | 1392 | 1400 | 2300 |
| A Downsiasible through drive torque       | $T_{D1\;max}$ Nr  | n 223 | 395 | 696  | 1002 | 1391 |
| A Permissible through-drive torque        | $T_{D2max}$ Nr    | n 157 | 305 | 696  | 398  | 909  |
| Downiasible through drive torque          | $T_{D1\;max}$ Nr  | n 157 | 305 | 696  | 398  | 909  |
| <b>B</b> Permissible through-drive torque | $T_{D2max}$ Nr    | n 223 | 395 | 696  | 1002 | 1391 |

### **Torque distribution**



#### Single pump with through drive

If no other pump is to be fitted by the plant, the simple type designation is sufficient.

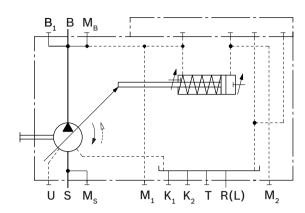
# The scope of supply includes:

► For all through drives hub, mounting bolts, seal and if necessary an intermediate shaft

#### **Combination pumps**

The user can make use of further independent circuits by attaching additional pumps.

If the combination pump consists of 2 Rexroth axial piston pumps and if these are to be supplied assembled together, the two type designations are to be joined with "+".


#### Ordering example:

A4VSO125DR/30R-APB25U33 + A4VSO71DR/10R-AZB25N00

# **OV - Without variable control facility**

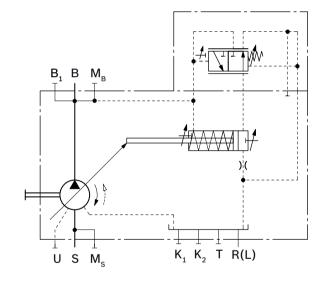
On axial piston units without variable control facility (OV), the stroking piston is based on DR control. The stroking piston is relieved to the reservoir. The  $V_{g\,max}$  limitation is variable from 50 to 100%. In operation, the axial piston unit without variable control facility acts like a fixed pump.

#### **▼** Schematic



# **DR - Pressure controller**

(see 92060)


The DR pressure controller limits the maximum pressure at the pump outlet within the control range of the pump. The pressure can be infinitely varied on the control valve.

► Setting range 20...350 bar Optional: Remote control facility (DRG)

### **▼** Characteristic



#### **▼** Schematic



# **DP - Pressure controller for parallel operation** (see 92060)

Suitable for pressure control of several axial piston units A4VSO ATEX II 3G ck IIC Tx in parallel operation.
Optional:

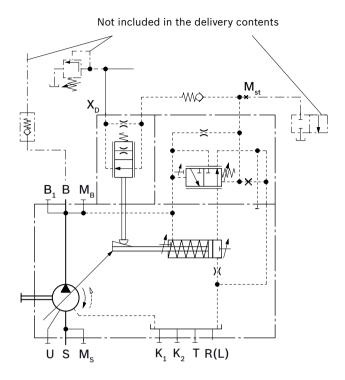
Flow control (DPF)

#### **▼** Characteristic



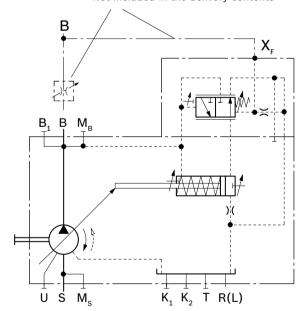
# FR - Flow controller

(see 92060)


Maintains a constant flow in a hydraulic system. Optional:

Remote control pressure control (FRG) Connection from  $X_F$  to the reservoir plugged (FR1, FRG1)

### **▼** Characteristic




#### **▼** Schematic



#### **▼** Schematic

Not included in the delivery contents



#### Note

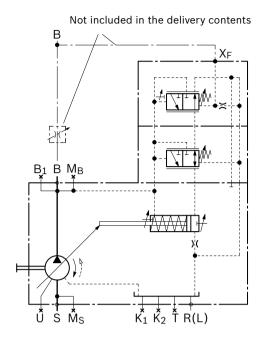
► All additional components from 92060 and 92064 must be compliant with the ATEX classification relevant to the application.

# **DFR - Pressure and flow controller**

(see 92060)

This controller maintains the flow from the pump constant, even if operating conditions change.

Superimposed on the flow control is a mechanically adjustable pressure controller.


Optional:

Connection from X<sub>F</sub> to the reservoir plugged (DFR1)

#### **▼** Characteristic



#### **▼** Schematic

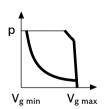


# LR2 - Power controller with hyperbolic characteristic

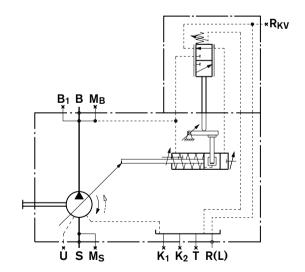
(see 92064)

The hyperbolic power controller maintains the specified drive power constant at a constant drive speed.

Optional:


Pressure control (LR2D), remote controlled (LR2G); Flow control (LR2F, LR2S);

Hydraulic two-point control (LR2Z)


#### Not available from RE 92064:

LR2.Y (electric drain valve)

#### **▼** Characteristic



#### **▼** Schematic



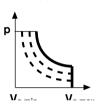
#### Note

► All additional components from 92060 and 92064 must be compliant with the ATEX classification relevant to the application.

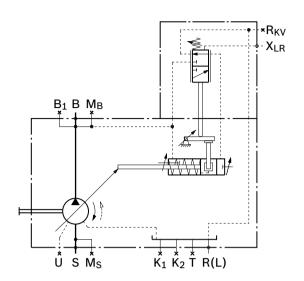
# LR3 - Power controller with remote controlled variable power characteristic

(see 92064)

This hyperbolic power controller maintains the specified drive power constant, while the power characteristic can be remotely controlled.


Optional:

Pressure control (LR3D), remote controlled (LR3G); Flow control (LR3F, LR3S); hydraulic two-point control (LR3Z)


#### Not available from RE 92064:

LR3.Y (electric drain valve)

#### **▼** Characteristic

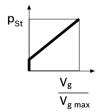


#### **▼** Schematic

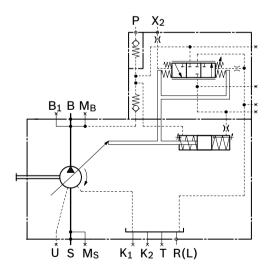


# **HD - Hydraulic control, pilot-pressure related** (see 92080)

Infinitely variable setting of pump displacement according to pilot pressure. The control is proportional to the specified pilot pressure setpoint (difference between pilot pressure and case pressure).


Optional:

Control characteristics (HD1, HD2, HD3); pressure control (HD.B); pressure control, remote controlled (HD.GB); power control (HD1P)


#### Not available from RE 92064:

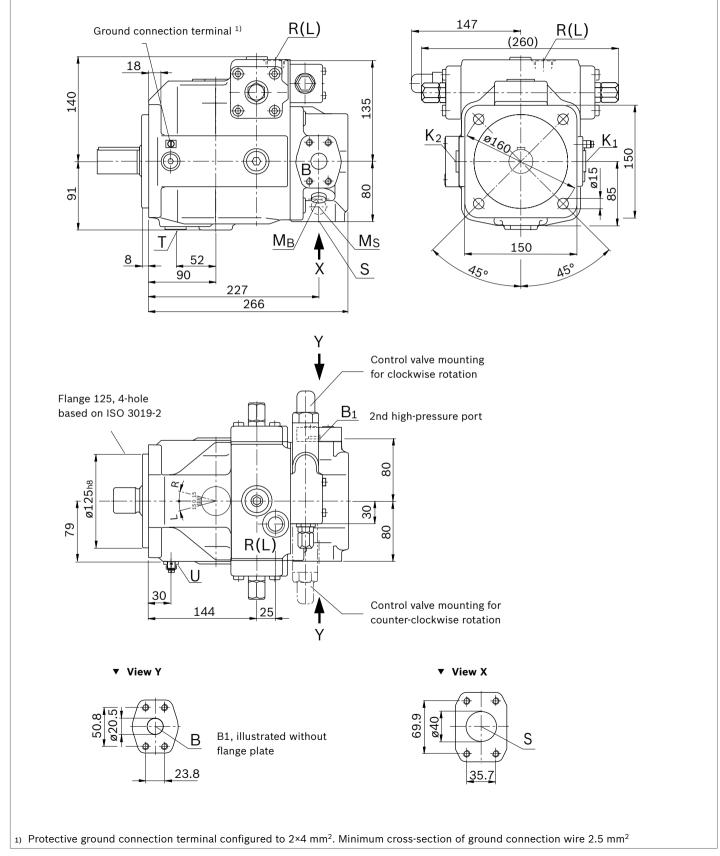
HD..T and HD..U (DBEP6 mounted)

#### **▼** Characteristic

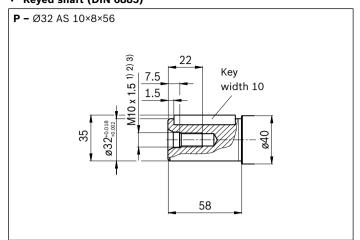


# **▼** Schematic

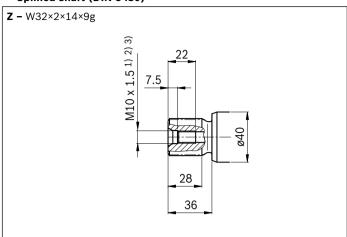



#### Note

► All additional components from 92060 and 92064 must be compliant with the ATEX classification relevant to the application.


# Dimensions, size 40

### DR - Pressure controller; flange version, metric


(further control device dimensions, see corresponding data sheets)



# ▼ Keyed shaft (DIN 6885)



#### ▼ Splined shaft (DIN 5480)



| Ports                           |                                                          | Standard                         | Size <sup>3)</sup>           | $p_{\rm max\;abs}$ [bar] <sup>4)</sup> | State <sup>9)</sup> |
|---------------------------------|----------------------------------------------------------|----------------------------------|------------------------------|----------------------------------------|---------------------|
| В                               | Service line port (high-pressure line) Fastening threads | SAE J518 <sup>6)</sup><br>DIN 13 | 3/4 in<br>M10×1.5; 17 deep   | 400                                    | 0                   |
| B1                              | 2nd service line port (high-pressure line)               | SAE J518 <sup>6)</sup>           | 3/4 in                       | 400                                    | X <sub>8)</sub>     |
| S                               | Fastening threads Suction port                           | DIN 13 SAE J518 <sup>6)</sup>    | M10×1.5; 17 deep<br>1 1/2 in | 30                                     | 0                   |
|                                 | Fastening threads                                        | DIN 13                           | M12×1.75; 20 deep            |                                        |                     |
| K <sub>1</sub> , K <sub>2</sub> | Flow port                                                | DIN 3852 <sup>5)</sup>           | M22 × 1.5; 14 deep           | 2                                      | X                   |
| T                               | Fluid drain                                              | DIN 3852 <sup>5)</sup>           | M22 × 1.5; 14 deep           | 2                                      | X                   |
| M <sub>B</sub>                  | Measured pressure B                                      | DIN 3852 <sup>5)</sup>           | M14 × 1.5; 12 deep           | 400                                    | Х                   |
| Ms                              | Measured pressure S                                      | DIN 3852 <sup>5)</sup>           | M14 × 1.5; 12 deep           | 30                                     | Х                   |
| R(L)                            | Fluid filling and air bleed<br>(drain port)              | DIN 3852 <sup>5)</sup>           | M22 × 1.5; 12 deep           | 2                                      | 0                   |
| U                               | Flow port                                                | DIN 3852 <sup>5)</sup>           | M14 × 1.5; 11.5 deep         | 5                                      | X <sup>7)</sup>     |

 $<sup>\</sup>scriptstyle{\mbox{\scriptsize 1)}}$  Center bore according to DIN 332

<sup>2)</sup> Thread according to DIN 13

<sup>3)</sup> For the maximum tightening torques, please refer to the notes in Part I (product-specific and general instructions).

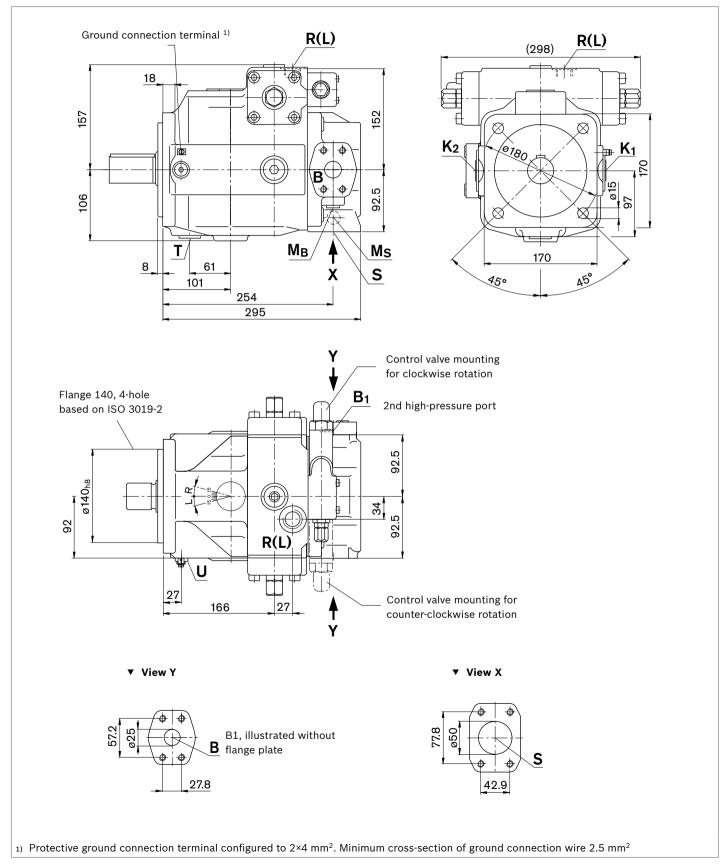
<sup>4)</sup> Momentary pressure spikes may occur depending on the application. Keep this in mind when selecting measuring devices and fittings.

<sup>5)</sup> The spot face can be deeper than specified in the appropriate standard.

<sup>6)</sup> Metric fastening thread, deviating from standard

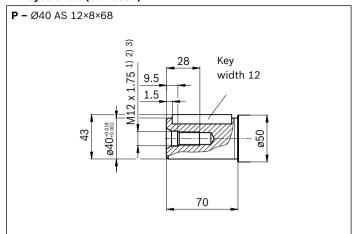
<sup>7)</sup> For above-reservoir installation and for any installation position with "drive shaft upward", a bearing flushing must be installed.

<sup>8)</sup> With flange plate plugged to withstand high pressure. Depending on the application, B and/or B<sub>1</sub> must be connected. The unused port must be plugged with the flange plate.

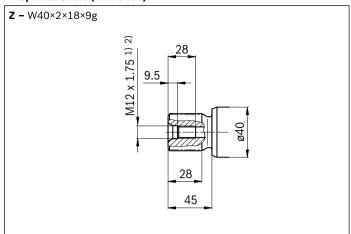

<sup>9)</sup> O = Must be connected (plugged on delivery)

X = Plugged (in normal operation)

#### **Dimensions size 71**


#### DR - Pressure controller; flange version, metric

(further control device dimensions, see corresponding data sheets)




### 16

#### ▼ Keyed shaft (DIN 6885)



#### ▼ Splined shaft (DIN 5480)



| Ports                           |                                                                 | Standard                         | Size <sup>3)</sup>        | p <sub>max abs</sub> [bar] <sup>4)</sup> | State <sup>9)</sup> |
|---------------------------------|-----------------------------------------------------------------|----------------------------------|---------------------------|------------------------------------------|---------------------|
| В                               | Service line port (high-pressure line) Fastening threads        | SAE J518 <sup>6)</sup><br>DIN 13 | 1 in<br>M12×1.75; 20 deep | 400                                      | 0                   |
| B1                              | 2nd service line port (high-pressure line)<br>Fastening threads | SAE J518 <sup>6)</sup><br>DIN 13 | 1 in<br>M12×1.75; 20 deep | 400                                      | X <sub>8</sub> )    |
| S                               | Suction port                                                    | SAE J518 <sup>6)</sup><br>DIN 13 | 2 in<br>M12×1.75; 20 deep | 30                                       | 0                   |
| K <sub>1</sub> , K <sub>2</sub> | Flow port                                                       | DIN 3852 <sup>5)</sup>           | M27 × 2; 16 deep          | 2                                        | X                   |
| T                               | Fluid drain                                                     | DIN 3852 <sup>5)</sup>           | M27 × 2; 16 deep          | 2                                        | Х                   |
| M <sub>B</sub>                  | Measured pressure B                                             | DIN 3852 <sup>5)</sup>           | M14 × 1.5; 12 deep        | 400                                      | Х                   |
| Ms                              | Measured pressure S                                             | DIN 3852 <sup>5)</sup>           | M14 × 1.5; 12 deep        | 30                                       | X                   |
| R(L)                            | Fluid filling and air bleed<br>(drain port)                     | DIN 3852 <sup>5)</sup>           | M27 × 2; 16 deep          | 2                                        | 0                   |
| U                               | Flow port                                                       | DIN 3852 <sup>5)</sup>           | M14 × 1.5; 12 deep        | 5                                        | X <sup>7)</sup>     |

 $<sup>\</sup>scriptstyle{\mbox{\scriptsize 1)}}$  Center bore according to DIN 332

<sup>2)</sup> Thread according to DIN 13

<sup>3)</sup> For the maximum tightening torques, please refer to the notes in Part I (product-specific and general instructions).

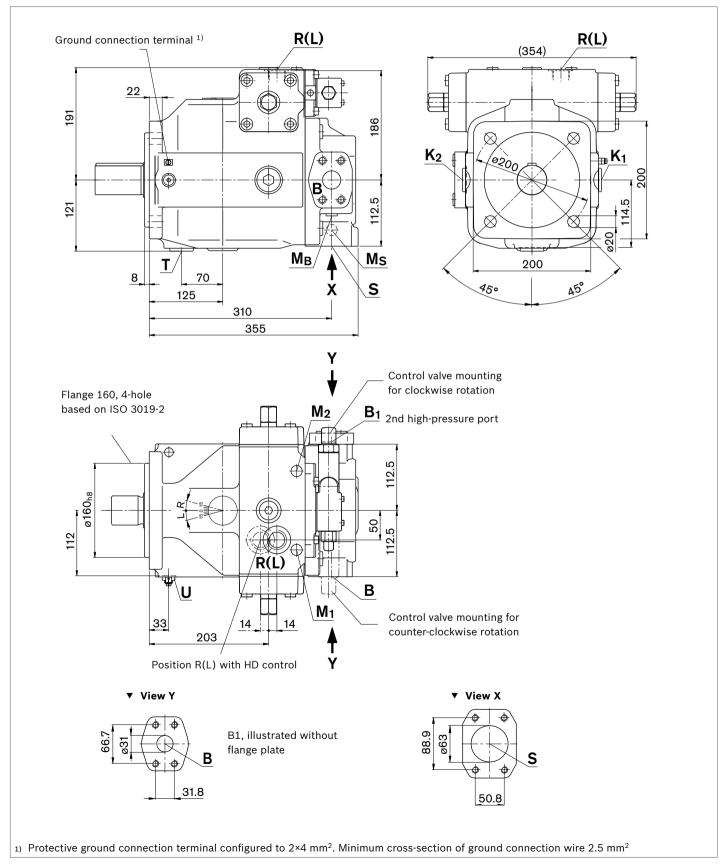
<sup>4)</sup> Momentary pressure spikes may occur depending on the application. Keep this in mind when selecting measuring devices and fittings.

<sup>5)</sup> The spot face can be deeper than specified in the appropriate standard.

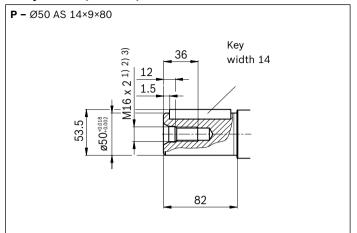
<sup>6)</sup> Metric fastening thread, deviating from standard

<sup>7)</sup> For above-reservoir installation and for any installation position with "drive shaft upward", a bearing flushing must be installed.

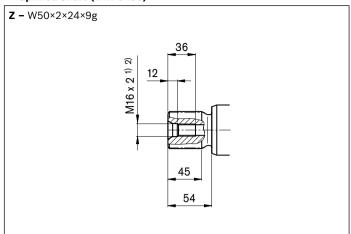
<sup>8)</sup> With flange plate plugged to withstand high pressure. Depending on the application, B and/or B<sub>1</sub> must be connected. The unused port must be plugged with the flange plate.


<sup>9)</sup> O = Must be connected (plugged on delivery)

X = Plugged (in normal operation)


#### **Dimensions size 125**

#### DR - Pressure controller; flange version, metric


(further control device dimensions, see corresponding data sheets)



#### ▼ Keyed shaft (DIN 6885)



#### ▼ Splined shaft (DIN 5480)



| Ports                           |                                            | Standard               | Size <sup>3)</sup> | $p_{\rm max\;abs}$ [bar] <sup>4)</sup> | State <sup>9)</sup> |
|---------------------------------|--------------------------------------------|------------------------|--------------------|----------------------------------------|---------------------|
| В                               | Service line port (high-pressure line)     | SAE J518 <sup>6)</sup> | 1 1/4 in           | 400                                    | 0                   |
|                                 | Fastening threads                          | DIN 13                 | M14 × 2; 19 deep   |                                        |                     |
| B1                              | 2nd service line port (high-pressure line) | SAE J518 <sup>6)</sup> | 1 1/4 in           | 400                                    | X <sup>8)</sup>     |
|                                 | Fastening threads                          | DIN 13                 | M14 × 2; 19 deep   |                                        |                     |
| S                               | Suction port                               | SAE J518 <sup>6)</sup> | 2 1/2 in           | 30                                     | 0                   |
|                                 |                                            | DIN 13                 | M12×1.75; 18 deep  |                                        |                     |
| K <sub>1</sub> , K <sub>2</sub> | Flow port                                  | DIN 3852 <sup>5)</sup> | M33 × 2; 18 deep   | 2                                      | Х                   |
| Т                               | Fluid drain                                | DIN 3852 <sup>5)</sup> | M33 × 2; 18 deep   | 2                                      | Χ                   |
| M <sub>B</sub>                  | Measured pressure B                        | DIN 3852 <sup>5)</sup> | M14 × 1.5; 12 deep | 400                                    | Х                   |
| Ms                              | Measured pressure S                        | DIN 3852 <sup>5)</sup> | M14 × 1.5; 12 deep | 30                                     | Χ                   |
| R(L)                            | Fluid filling and air bleed                | DIN 3852 <sup>5)</sup> | M33 × 2; 18 deep   | 2                                      | 0                   |
|                                 | (drain port)                               |                        |                    |                                        |                     |
| U                               | Flow port                                  | DIN 3852 <sup>5)</sup> | M14 × 1.5; 12 deep | 5                                      | X <sup>7)</sup>     |
| M1, M2                          | Measuring control pressure                 | DIN 3852 <sup>5)</sup> | M14 × 1.5; 12 deep | 400                                    | X                   |

 $<sup>\</sup>scriptstyle{ exttt{1)}}$  Center bore according to DIN 332

<sup>2)</sup> Thread according to DIN 13

<sup>3)</sup> For the maximum tightening torques, please refer to the notes in Part I (product-specific and general instructions).

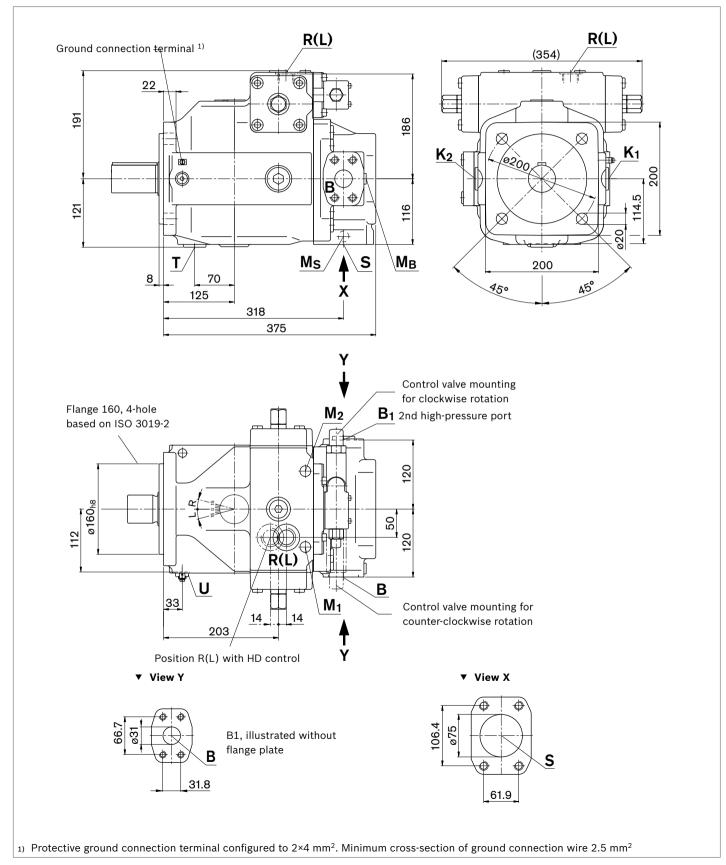
<sup>4)</sup> Momentary pressure spikes may occur depending on the application. Keep this in mind when selecting measuring devices and fittings.

<sup>5)</sup> The spot face can be deeper than specified in the appropriate standard.

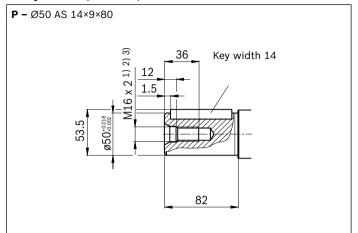
<sup>6)</sup> Metric fastening thread, deviating from standard

<sup>7)</sup> For above-reservoir installation and for any installation position with "drive shaft upward", a bearing flushing must be installed.

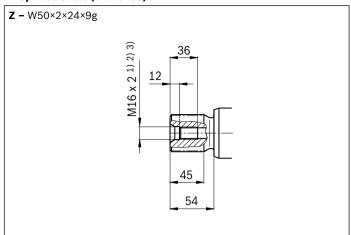
 $_{8)}$  With flange plate plugged to withstand high pressure. Depending on the application, B and/or  $B_{1}$  must be connected. The unused port must be plugged with the flange plate.


<sup>9)</sup> O = Must be connected (plugged on delivery)

X = Plugged (in normal operation)


#### **Dimensions size 180**

#### DR - Pressure controller; flange version, metric


(further control device dimensions, see corresponding data sheets)



#### ▼ Keyed shaft (DIN 6885)



#### ▼ Splined shaft (DIN 5480)



| Ports                           |                                            | Standard               | Size <sup>3)</sup> | p <sub>max abs</sub> [bar] <sup>4)</sup> | State <sup>9)</sup> |
|---------------------------------|--------------------------------------------|------------------------|--------------------|------------------------------------------|---------------------|
| В                               | Service line port (high-pressure line)     | SAE J518 <sup>6)</sup> | 1 1/4 in           | 400                                      | 0                   |
|                                 | Fastening threads                          | DIN 13                 | M14 × 2; 19 deep   |                                          |                     |
| B1                              | 2nd service line port (high-pressure line) | SAE J518 <sup>6)</sup> | 1 1/4 in           | 400                                      | X <sub>8)</sub>     |
|                                 | Fastening threads                          | DIN 13                 | M14 × 2; 19 deep   |                                          |                     |
| S                               | Suction port                               | SAE J518 <sup>6)</sup> | 3 in               | 30                                       | 0                   |
|                                 |                                            | DIN 13                 | M16 × 2; 24 deep   |                                          |                     |
| K <sub>1</sub> , K <sub>2</sub> | Flow port                                  | DIN 3852 <sup>5)</sup> | M33 × 2; 18 deep   | 2                                        | X                   |
| Т                               | Fluid drain                                | DIN 3852 <sup>5)</sup> | M33 × 2; 18 deep   | 2                                        | Х                   |
| M <sub>B</sub>                  | Measured pressure B                        | DIN 3852 <sup>5)</sup> | M14 × 1.5; 12 deep | 400                                      | X                   |
| Ms                              | Measured pressure S                        | DIN 3852 <sup>5)</sup> | M14 × 1.5; 12 deep | 30                                       | Х                   |
| R(L)                            | Fluid filling and air bleed                | DIN 3852 <sup>5)</sup> | M33 × 2; 18 deep   | 2                                        | 0                   |
|                                 | (drain port)                               |                        |                    |                                          |                     |
| U                               | Flow port                                  | DIN 3852 <sup>5)</sup> | M14 × 1.5; 12 deep | 5                                        | X <sup>7)</sup>     |
| M1, M2                          | Measuring control pressure                 | DIN 3852 <sup>5)</sup> | M14 × 1.5; 12 deep | 400                                      | X                   |

 $<sup>\</sup>scriptstyle{ exttt{1)}}$  Center bore according to DIN 332

<sup>2)</sup> Thread according to DIN 13

<sup>3)</sup> For the maximum tightening torques, please refer to the notes in Part I (product-specific and general instructions).

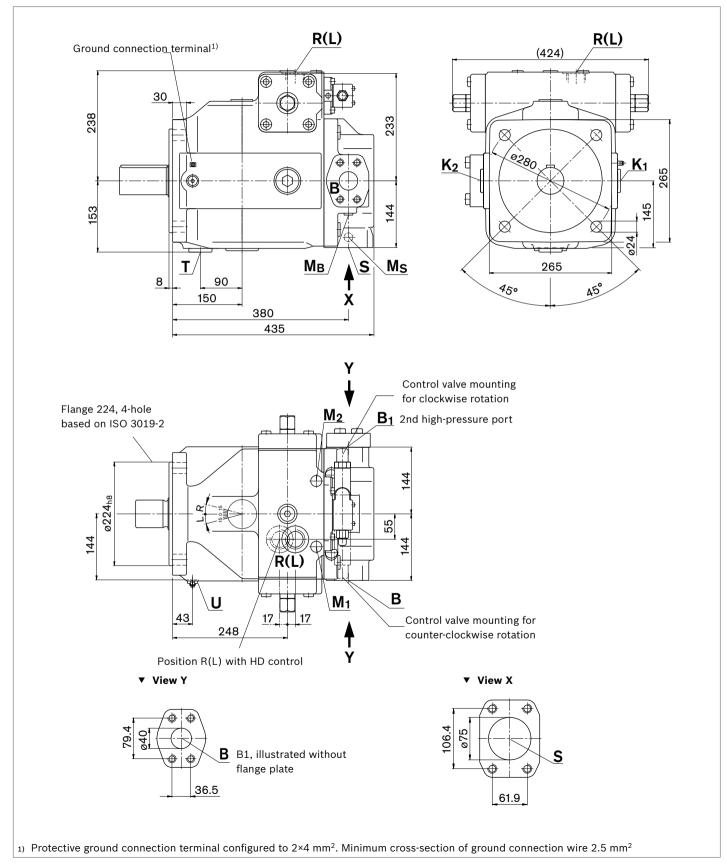
<sup>4)</sup> Momentary pressure spikes may occur depending on the application. Keep this in mind when selecting measuring devices and fittings.

 $_{\mbox{\scriptsize 5)}}$  The spot face can be deeper than specified in the appropriate standard.

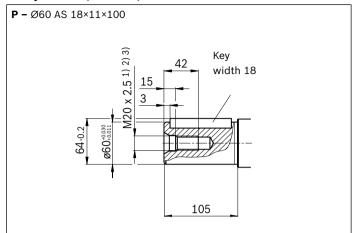
<sup>6)</sup> Metric fastening thread, deviating from standard

<sup>7)</sup> For above-reservoir installation and for any installation position with "drive shaft upward", a bearing flushing must be installed.

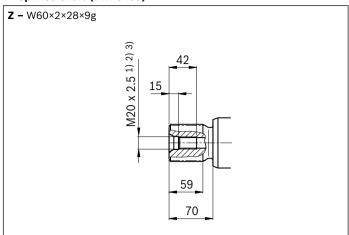
<sup>8)</sup> With flange plate plugged to withstand high pressure. Depending on the application, B and/or  $B_1$  must be connected. The unused port must be plugged with the flange plate.


<sup>9)</sup> O = Must be connected (plugged on delivery)

X = Plugged (in normal operation)


#### **Dimensions size 250**

#### DR - Pressure controller; flange version, metric


(further control device dimensions, see corresponding data sheets)



#### ▼ Keyed shaft (DIN 6885)



#### ▼ Splined shaft (DIN 5480)



| Ports                           |                                                              | Standard                         | Size <sup>3)</sup>           | $p_{\rm max\;abs}$ [bar] <sup>4)</sup> | State <sup>9)</sup> |
|---------------------------------|--------------------------------------------------------------|----------------------------------|------------------------------|----------------------------------------|---------------------|
| В                               | Service line port (high-pressure line) Fastening threads     | SAE J518 <sup>6)</sup><br>DIN 13 | 1 1/2 in<br>M16 × 2; 25 deep | 400                                    | 0                   |
| B1                              | 2nd service line port (high-pressure line) Fastening threads | SAE J518 <sup>6)</sup><br>DIN 13 | 1 1/2 in<br>M16 × 2; 25 deep | 400                                    | X <sub>8)</sub>     |
| S                               | Suction port                                                 | SAE J518 <sup>6)</sup><br>DIN 13 | 3 in<br>M16 × 2; 24 deep     | 30                                     | 0                   |
| K <sub>1</sub> , K <sub>2</sub> | Flow port                                                    | DIN 3852 <sup>5)</sup>           | M42 × 2; 20 deep             | 2                                      | Χ                   |
| Т                               | Fluid drain                                                  | DIN 3852 <sup>5)</sup>           | M42 × 2; 20 deep             | 2                                      | Х                   |
| M <sub>B</sub>                  | Measured pressure B                                          | DIN 3852 <sup>5)</sup>           | M14 × 1.5; 12 deep           | 400                                    | Χ                   |
| Ms                              | Measured pressure S                                          | DIN 3852 <sup>5)</sup>           | M14 × 1.5; 12 deep           | 30                                     | Χ                   |
| R(L)                            | Fluid filling and air bleed<br>(drain port)                  | DIN 3852 <sup>5)</sup>           | M42 × 2; 20 deep             | 2                                      | 0                   |
| U                               | Flow port                                                    | DIN 3852 <sup>5)</sup>           | M14 × 1.5; 12 deep           | 5                                      | X <sup>7)</sup>     |
| M1, M <sub>2</sub>              | Measuring control pressure                                   | DIN 3852 <sup>5)</sup>           | M14 × 1.5; 12 deep           | 400                                    | X                   |

 $<sup>\</sup>scriptstyle{\mbox{\scriptsize 1)}}$  Center bore according to DIN 332

<sup>2)</sup> Thread according to DIN 13

<sup>3)</sup> For the maximum tightening torques, please refer to the notes in Part I (product-specific and general instructions).

<sup>4)</sup> Momentary pressure spikes may occur depending on the application. Keep this in mind when selecting measuring devices and fittings.

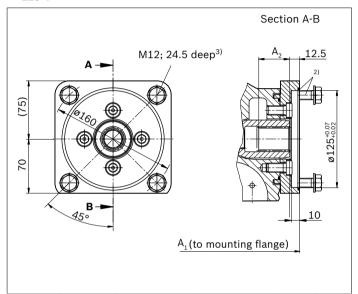
 $_{\mbox{\scriptsize 5)}}$  The spot face can be deeper than specified in the appropriate standard.

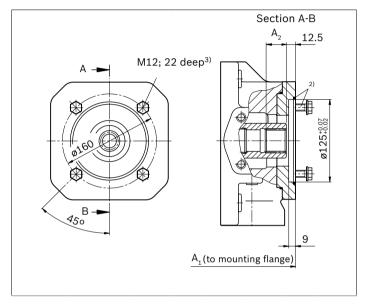
<sup>6)</sup> Metric fastening thread, deviating from standard

<sup>7)</sup> For above-reservoir installation and for any installation position with "drive shaft upward", a bearing flushing must be installed.

<sup>8)</sup> With flange plate plugged to withstand high pressure. Depending on the application, B and/or B<sub>1</sub> must be connected. The unused port must be plugged with the flange plate.

<sup>9)</sup> O = Must be connected (plugged on delivery)


X = Plugged (in normal operation)


# Through drive dimensions

| Flange ISO 30 | 19-2                     | Hub for splined shaft <sup>1)</sup> | Availabil | ity for size | es  |     |     | Code |
|---------------|--------------------------|-------------------------------------|-----------|--------------|-----|-----|-----|------|
| Diameter      | Attachment <sup>2)</sup> | Diameter                            | 40        | 71           | 125 | 180 | 250 |      |
| 125-4         | <b>;</b> ;               | N32×2×14×8H                         | •         | •            | -   | -   | -   | K31  |
|               |                          | N32×2×14×8H                         | -         | -            | •   | •   | •   | U31  |

• = Available - = Not available

#### ▼ 125-4





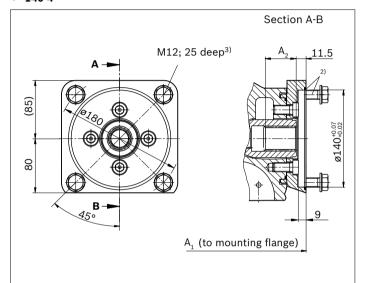
| K31 | NG | A1  | A2   |
|-----|----|-----|------|
|     | 40 | 288 | 40   |
|     | 71 | 316 | 33.6 |

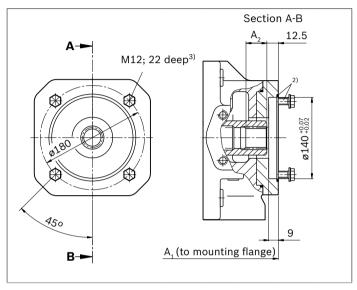
| U31 | NG  | A1  | A2   |  |
|-----|-----|-----|------|--|
|     | 125 | 369 | 35.6 |  |
|     | 180 | 393 | 35.6 |  |
|     | 250 | 453 | 38   |  |

#### Note

<sup>1)</sup> According to DIN 5480

<sup>2)</sup> Mounting drillings pattern viewed on through drive, with control at top. Mounting bolts and O-ring included in the scope of supply.


<sup>3)</sup> Thread according to DIN 13. For the maximum tightening torques, please refer to the notes in Part I (product-specific and general instructions.


# 24 **A4VSO Series 10, 11 and 30** | Axial piston variable pump Through drive dimensions

| Flange ISO 303 | 19-2                     | Hub for splined shaft <sup>1)</sup> | Availabil | ity for size | es  |     |     | Code |
|----------------|--------------------------|-------------------------------------|-----------|--------------|-----|-----|-----|------|
| Diameter       | Attachment <sup>2)</sup> | Diameter                            | 40        | 71           | 125 | 180 | 250 |      |
| 140-4          | \$\$                     | N40×2×18×8H                         | _         | •            | -   | _   | _   | K33  |
|                |                          | N40×2×14×8H                         | -         | -            | •   | •   | •   | U33  |

• = Available - = Not available

#### ▼ 140-4



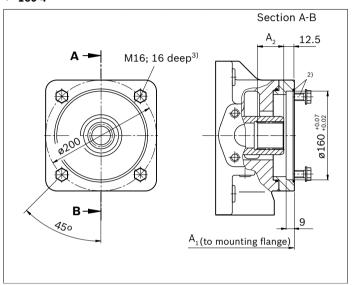


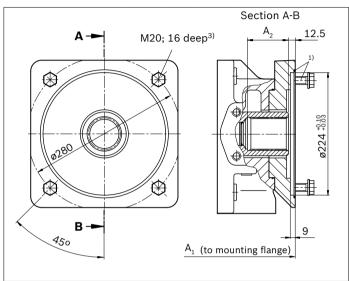
| K33 | NG | A1  | A2   |
|-----|----|-----|------|
|     | 71 | 316 | 42.8 |

| U33 | NG  | A1  | A2   |  |
|-----|-----|-----|------|--|
|     | 125 | 369 | 43.8 |  |
|     | 180 | 393 | 43.8 |  |
|     | 250 | 453 | 48.9 |  |

### Note

 $_{\rm 1)}$  According to ANSI B92.1a, 30° pressure angle, flat root, side fit, tolerance class 5


<sup>2)</sup> Mounting drillings pattern viewed on through drive with control at top Mounting bolts and O-ring included in the scope of supply.


<sup>3)</sup> Thread according to DIN 13. For the maximum tightening torques, please refer to the notes in Part I (product-specific and general instructions.

| Flange ISO 30 | 019-2                    | Hub for splined shaft <sup>1)</sup> | Availabil | ity for size | es  |     |     | Code |
|---------------|--------------------------|-------------------------------------|-----------|--------------|-----|-----|-----|------|
| Diameter      | Attachment <sup>2)</sup> | Diameter                            | 40        | 71           | 125 | 180 | 250 |      |
| 160-4         | **                       | N50×2×24×8H                         | _         | -            | _   | •   | •   | U34  |
| 224-4         | \$3                      | N60×2×28×8H                         | _         | _            | _   | _   | •   | U35  |

• = Available - = Not available

#### ▼ 160-4





| U35 | NG  | A1  | A2 |   |  |
|-----|-----|-----|----|---|--|
|     | 250 | 469 | 75 | , |  |
|     |     |     |    |   |  |

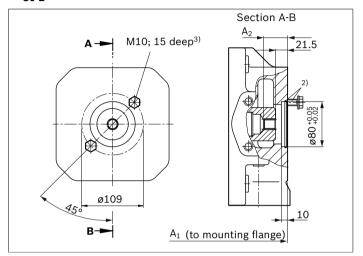
| U34 | NG  | A1  | A2   |
|-----|-----|-----|------|
|     | 125 | 369 | 51.6 |
|     | 180 | 393 | 51.6 |
|     | 250 | 453 | 54   |

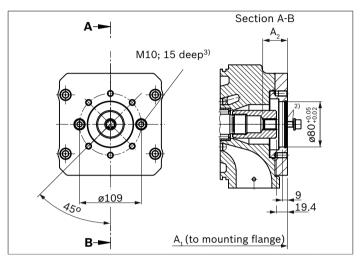
#### Note

 $_{\mbox{\scriptsize 1)}}$  According to ANSI B92.1a, 30° pressure angle, flat root, side fit, tolerance class 5

<sup>2)</sup> Mounting drillings pattern viewed on through drive with control at top Mounting bolts and O-ring included in the scope of supply.

<sup>3)</sup> Thread according to DIN 13. For the maximum tightening torques, please refer to the notes in Part I (product-specific and general instructions.


# **A4VSO Series 10, 11 and 30** | Axial piston variable pump Through drive dimensions


| Flange ISO 3019-2 |                          | Hub for splined shaft <sup>1)</sup> | Hub for splined shaft <sup>1)</sup> Availabili |    | wailability for sizes |     |     |     |  |
|-------------------|--------------------------|-------------------------------------|------------------------------------------------|----|-----------------------|-----|-----|-----|--|
| Diameter          | Attachment <sup>2)</sup> | Diameter                            | 40                                             | 71 | 125                   | 180 | 250 |     |  |
| 80-2              | oP                       | 3/4 in 11T 16/32DP                  | •                                              | •  | _                     | -   | _   | KB2 |  |
|                   | 8, o°, o∞                | 3/4 in 11T 16/32DP                  | _                                              | _  | •                     | •   | •   | UB2 |  |

• = Lieferbar - = Not available

#### ▼ 80-2

26



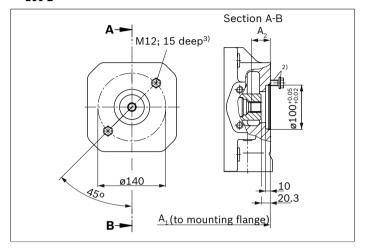


| KB2 | NG | A1  | A2   |
|-----|----|-----|------|
|     | 45 | 290 |      |
|     | 71 | 291 | 40.5 |

| UB2 | NG  | A1  | A2   |  |
|-----|-----|-----|------|--|
|     | 125 | 369 | 43.4 |  |
|     | 180 | 393 | 40.5 |  |
|     | 250 | 453 | 40.5 |  |

### Note

 $_{\rm 1)}$  According to ANSI B92.1a, 30° pressure angle, flat root, side fit, tolerance class 5


<sup>2)</sup> Mounting drillings pattern viewed on through drive with control at top Mounting bolts and O-ring included in the scope of supply.

<sup>3)</sup> Thread according to DIN 13. For the maximum tightening torques, please refer to the notes in Part I (product-specific and general instructions.

| Flange ISO 3019-2 |                          | Hub for splined shaft <sup>1)</sup> | Availabil | ity for size | es  | Code |     |     |
|-------------------|--------------------------|-------------------------------------|-----------|--------------|-----|------|-----|-----|
| Diameter          | Attachment <sup>2)</sup> | Diameter                            | 40        | 71           | 125 | 180  | 250 |     |
| 100-2             | ď                        | 7/8 in 13T 16/32DP                  | •         | •            | _   | _    | _   | KB3 |
|                   | 8, 00, 00                | 7/8 in 13T 16/32DP                  | -         | _            | •   | •    | •   | UB3 |

• = Lieferbar - = Not available

#### ▼ 100-2



|       | Section A-B                                                             |
|-------|-------------------------------------------------------------------------|
| A - 0 | Section A-B M12; 15 deep <sup>3</sup> )  A  2  3  3  3  3  40  15  18,5 |
| B-    | A, (to mounting flange)                                                 |

| КВ3 | NG | A1  | A2   |
|-----|----|-----|------|
|     | 40 | 290 | 43.3 |
|     | 71 | 291 | 43.4 |

| UB3 | NG  | A1  | A2   |   |
|-----|-----|-----|------|---|
|     | 125 | 369 | 43.4 | , |
|     | 180 | 393 | 43.4 |   |
|     | 250 | 453 | 43.5 |   |

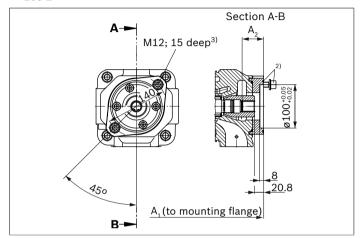
#### Note

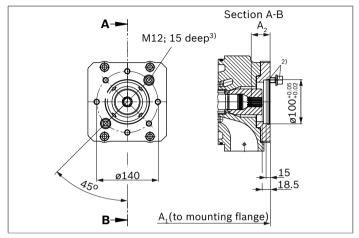
 $_{\mbox{\scriptsize 1}}\mbox{)}$  According to ANSI B92.1a, 30° pressure angle, flat root, side fit, tolerance class 5

<sup>2)</sup> Mounting drillings pattern viewed on through drive with control at top Mounting bolts and O-ring included in the scope of supply.

<sup>3)</sup> Thread according to DIN 13. For the maximum tightening torques, please refer to the notes in Part I (product-specific and general instructions.

# A4VSO Series 10, 11 and 30 | Axial piston variable pump


Through drive dimensions


| Flange ISO 3019-2 |                          | Hub for splined shaft <sup>1)</sup> | Availabil | Availability for sizes |     | izes |     |     |  |
|-------------------|--------------------------|-------------------------------------|-----------|------------------------|-----|------|-----|-----|--|
| Diameter          | Attachment <sup>2)</sup> | Diameter                            | 40        | 71                     | 125 | 180  | 250 |     |  |
| 100-2             | 8, o°, o-o               | 1 in 15T 16/32DP                    | •         | •                      | -   | _    | _   | KB4 |  |
|                   |                          | 1 in 15T 16/32DP                    | -         | -                      | •   | •    | •   | UB4 |  |

= Lieferbar - = Not available

#### ▼ 100-2

28



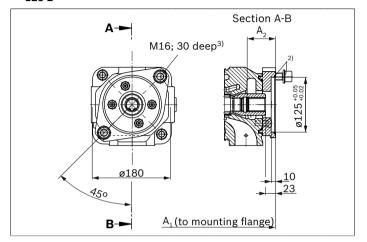


| KB4 | NG | A1  | A2   |
|-----|----|-----|------|
|     | 45 | 290 | 48.2 |
|     | 71 | 291 | 48.3 |

| UB4 | NG  | A1  | A2   |   |
|-----|-----|-----|------|---|
|     | 125 | 369 | 43.4 |   |
|     | 180 | 393 | 48.4 | _ |
|     | 250 | 453 | 48.4 | _ |

#### Note

<sup>1)</sup> According to ANSI B92.1a, 30° pressure angle, flat root, side fit, tolerance class 5


<sup>2)</sup> Mounting drillings pattern viewed on through drive with control at top Mounting bolts and O-ring included in the scope of supply.

<sup>3)</sup> Thread according to DIN 13. For the maximum tightening torques, please refer to the notes in Part I (product-specific and general instructions.

| Flange ISO 3019-2 |                          | Hub for splined shaft <sup>1)</sup> | Availabil | ity for size | es  | Code |     |     |
|-------------------|--------------------------|-------------------------------------|-----------|--------------|-----|------|-----|-----|
| Diameter          | Attachment <sup>2)</sup> | Diameter                            | 40        | 71           | 125 | 180  | 250 |     |
| 125-2             | op                       | 1 1/4 in 14T 12/24DP                | _         | •            | -   | _    | _   | KB5 |
|                   | 0-0                      | 1 1/4 in 14T 12/24DP                | -         | -            | •   | •    | •   | UB5 |

• = Lieferbar - = Not available

#### ▼ 125-2



| M16; 22 deep <sup>3)</sup>            |
|---------------------------------------|
| B A <sub>1</sub> (to mounting flange) |

| KB5 | NG | A1  | A2 |
|-----|----|-----|----|
|     | 71 | 291 | 61 |

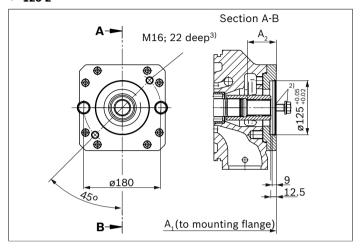
| UB5 | NG  | A1  | A2   |  |
|-----|-----|-----|------|--|
|     | 125 | 369 | 58   |  |
|     | 180 | 393 | 58   |  |
|     | 250 | 453 | 58.9 |  |

# Note

 $_{\mbox{\scriptsize 1}}\mbox{)}$  According to ANSI B92.1a, 30° pressure angle, flat root, side fit, tolerance class 5

<sup>2)</sup> Mounting drillings pattern viewed on through drive with control at top Mounting bolts and O-ring included in the scope of supply.

<sup>3)</sup> Thread according to DIN 13. For the maximum tightening torques, please refer to the notes in Part I (product-specific and general instructions.


# **A4VSO Series 10, 11 and 30** | Axial piston variable pump Through drive dimensions

| Flange ISO 3019-2 |                          | Hub for splined shaft <sup>1)</sup> | Hub for splined shaft <sup>1)</sup> Availabil |    |     | Availability for sizes |     |     |  |  |
|-------------------|--------------------------|-------------------------------------|-----------------------------------------------|----|-----|------------------------|-----|-----|--|--|
| Diameter          | Attachment <sup>2)</sup> | Diameter                            | 40                                            | 71 | 125 | 180                    | 250 |     |  |  |
| 125-2             | 9, o°, o-o               | 1 1/2 in 17T 12/24DP                | _                                             | _  | •   | •                      | •   | UB6 |  |  |

• = Lieferbar - = Not available

#### ▼ 125-2

30



| UB6 | NG  | A1  | A2   |  |
|-----|-----|-----|------|--|
|     | 125 | 369 | 60.4 |  |
|     | 180 | 393 | 61.9 |  |
|     | 250 | 453 | 67.5 |  |

# Note

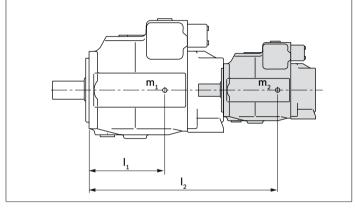
 $_{\rm 1)}$  According to ANSI B92.1a, 30° pressure angle, flat root, side fit, tolerance class 5

<sup>2)</sup> Mounting drillings pattern viewed on through drive with control at top Mounting bolts and O-ring included in the scope of supply.

<sup>3)</sup> Thread according to DIN 13. For the maximum tightening torques, please refer to the notes in Part I (product-specific and general instructions.

# **Overview of attachment options**

| Through drive     |                                        |             | Mounting options – 2nd pump |                                          |
|-------------------|----------------------------------------|-------------|-----------------------------|------------------------------------------|
| Flange ISO 3019-2 | lange ISO 3019-2 Hub for splined shaft |             | Short designation           | A4VSO ATEX II 3G ck IIC Tx<br>NG (shaft) |
| 125-4             | W32×2×                                 | 14×9g       | K31; U31                    | 40 (Z)                                   |
| 140-4             | W40×2×                                 | 18×9g       | K33; U33                    | 71 (Z)                                   |
| 160-4             | W50×2×24×9g                            |             | U34                         | 125, 180 (Z)                             |
| 224-4             | W60×2×28×9g                            |             | U35                         | 250 (Z)                                  |
| Flange ISO 3019-2 | Hub for splined shaft                  |             | Short designation           | A10VSO ATEX II 3G ck IIC Tx NG (shaft)   |
| 80-2              | 3/4in                                  | 11T 16/32DP | KB2; UB2                    | 18 (S, R)                                |
| 100-2             | 7/8in                                  | 13T 16/32DP | KB3; UB3                    | 28 (S, R)                                |
| 100-2             | 1in                                    | 15T 16/32DP | KB4; UB4                    | 45 (S, R)                                |
| 125-2             | 1 1/4in                                | 14T 12/24DP | KB5; UB5                    | 71 (S, R)                                |
| 125-2             | 1 1/2in                                | 17T 12/24DP | KB6; UB6                    | 100 (S)                                  |


# Combination pumps A4VSO + A4VSO (A4VSO + A10VSO)

A tandem pump consisting of two equal sizes is permissible without additional supports assuming that the dynamic mass acceleration does not exceed a maximum of  $10 g = 98.1 \text{ m/s}^2$ .

For combination pumps consisting of more than two pumps, the mounting flange must be rated for the permissible mass torque (please contact us).

### Note

All attachment pumps must be compliant with the ATEX classification relevant to the application.



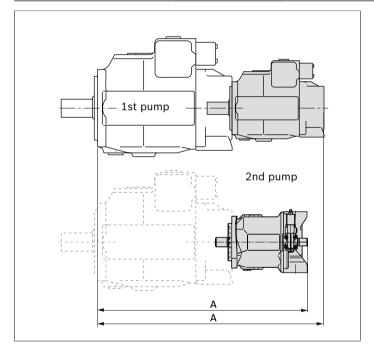
| $m_1, m_2$                     | Mass of pump                          | kg     |
|--------------------------------|---------------------------------------|--------|
| $l_1, l_2$                     | Distance from                         | [mm]   |
|                                | center of gravity                     |        |
| $T_m = (m_1 \times l_1 - l_2)$ | 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 | · [Nm] |
| $I_m - (m_1 \wedge t_1)$       | 102                                   | [MIII] |

#### Permissible mass torques A4VSO

| NG                              | ·     |    | 40   | 71   | 125  | 180  | 250  |
|---------------------------------|-------|----|------|------|------|------|------|
| Static                          | $T_m$ | Nm | 1800 | 2000 | 4200 | 4200 | 9300 |
| Dynamic at 10 g (98.1 m/s²)     | $T_m$ | Nm | 180  | 200  | 420  | 420  | 930  |
| Weight                          | m     | kg | 39   | 53   | 88   | 102  | 184  |
| Distance from center of gravity | $l_1$ | mm | 120  | 140  | 170  | 180  | 210  |

### Zulässige Massenmomente A10VSO

| NG                                |       |    | 18  | 28  | 45   | 71   | 100  |
|-----------------------------------|-------|----|-----|-----|------|------|------|
| Static                            | $T_m$ | Nm | 500 | 880 | 1370 | 2160 | 3000 |
| Dynamic at 10 g (98,1 m/s²)       | $T_m$ | Nm | 50  | 88  | 137  | 216  | 300  |
| Weight with throug drive          | m     | kg | 14  | 19  | 25   | 39   | 54   |
| Weight without throug drive plate |       |    | 12  | 15  | 21   | 33   | 45   |
| Distance from center of gravity   | $l_1$ | mm | 90  | 110 | 130  | 150  | 160  |


# Dimensions of combination pumps with two A4VSO ATEX II 3G ck IIC Tx

# Total length "A" at mounting pump A4VSO

| 1st pump Sizes | 2 <sup>nd</sup> pump Sizes |     |     |     |     |  |  |  |  |
|----------------|----------------------------|-----|-----|-----|-----|--|--|--|--|
|                | 40                         | 71  | 125 | 180 | 250 |  |  |  |  |
| 40             | 554                        | -   | -   | -   | -   |  |  |  |  |
| 71             | 582                        | 611 | -   | -   | -   |  |  |  |  |
| 125            | 635                        | 664 | 724 | -   | -   |  |  |  |  |
| 180            | 659                        | 688 | 748 | 768 | -   |  |  |  |  |
| 250            | 719                        | 748 | 808 | 828 | 904 |  |  |  |  |

# Total length "A" at mounting pump A10VSO

| 1st pump Sizes | 2 <sup>nd</sup> pump Sizes |     |     |     |     |  |  |  |
|----------------|----------------------------|-----|-----|-----|-----|--|--|--|
|                | 18                         | 28  | 45  | 71  | 100 |  |  |  |
| 40             | 485                        | 496 | 514 | _   | -   |  |  |  |
| 71             | 486                        | 497 | 515 | 548 | -   |  |  |  |
| 125            | 564                        | 575 | 593 | 626 | 698 |  |  |  |
| 180            | 588                        | 599 | 617 | 650 | 722 |  |  |  |
| 250            | 648                        | 659 | 677 | 710 | 782 |  |  |  |



#### Note

#### 36

### **Project planning note**

- ► The pump A4VSO ATEX II 3G ck IIC Tx is designed for use in open circuits.
- ► The project planning, installation and commissioning of the axial piston unit requires the involvement of skilled person.
- ▶ Before using the axial piston unit, please read the instruction manual (Part I and Part II) completely and thoroughly. If necessary, these can be requested from Bosch Rexroth.
- ► Before finalizing your design, request a binding installation drawing.
- ► The data and notes contained herein must be adhered to.
- Pressure controls are not backups against pressure overload. A separate pressure-relief valve is to be provided in the hydraulic system.
- Depending on the operating conditions of the axial piston unit (operating pressure, fluid temperature), the characteristic may shift.
- ▶ Not all variants of the product are approved for use in safety functions according to ISO 13849. Please consult the responsible contact person at Bosch Rexroth if you require reliability parameters (e.g. MTTF<sub>d</sub>) for functional safety.
- ► Service line ports:
  - The ports and fastening threads are designed for the specified maximum pressure. The machine or system manufacturer must ensure that the connecting elements and lines correspond to the specified application conditions (pressure, flow, hydraulic fluid, temperature) with the necessary safety factors.
  - The service line ports and function ports is only designed to accommodate hydraulic lines.

### **Safety instructions**

- ▶ During and shortly after operation, there is a risk of burns on the axial piston unit and especially on the solenoids. Take appropriate safety measures (e. g. by wearing protective clothing).
- Moving parts in control and regulation systems (e.g. valve spools) may in certain circumstances become stuck in an undefined position due to contamination (e.g. impure hydraulic fluid, abrasion or residual dirt from components). As a result, the hydraulic fluid flow or build-up of torque of the axial piston unit will no longer respond correctly to the operator's commands. Even the use of different filter cartridges (external or internal inlet filter) will not rule out a fault but merely minimize the risk. The machine/system manufacturer must test whether remedial measures are needed on the machine for the application concerned in order to set the consumer being driven to a safe position (e.g. safe stop) and if necessary to ensure it is properly implemented.

#### **Bosch Rexroth AG**

Mobile Applications An den Kelterwiesen 14 72160 Horb a.N., Germany Tel. +49 7451 92-0 info.ma@boschrexroth.de www.boschrexroth.com © Bosch Rexroth AG 2017. All rights reserved, also regarding any disposal, exploitation, reproduction, editing, distribution, as well as in the event of applications for industrial property rights. The data specified within only serves to describe the product. No statements concerning a certain condition or suitability for a certain application can be derived from our information. The information given does not release the user from the obligation of own judgment and verification. It must be remembered that our products are subject to a natural process of wear and aging.